3.753 \(\int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\)

Optimal. Leaf size=354 \[ -\frac {8 A b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (a-b) \sqrt {a+b} \left (3 a^2 (3 A+5 C)+8 A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^4 d}+\frac {2 \sqrt {a+b} \left (-3 a^2 (3 A+5 C)+2 a A b-8 A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^3 d}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)} \]

[Out]

2/5*A*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a/d/cos(d*x+c)^(5/2)-8/15*A*b*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/a^2/d/
cos(d*x+c)^(3/2)+2/15*(a-b)*(8*A*b^2+3*a^2*(3*A+5*C))*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/
cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/
2)/a^4/d+2/15*(2*a*A*b-8*A*b^2-3*a^2*(3*A+5*C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*
x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3
/d

________________________________________________________________________________________

Rubi [A]  time = 0.81, antiderivative size = 354, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {3056, 3055, 2998, 2816, 2994} \[ \frac {2 \sqrt {a+b} \left (-3 a^2 (3 A+5 C)+2 a A b-8 A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^3 d}+\frac {2 (a-b) \sqrt {a+b} \left (3 a^2 (3 A+5 C)+8 A b^2\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{15 a^4 d}-\frac {8 A b \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{5 a d \cos ^{\frac {5}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

(2*(a - b)*Sqrt[a + b]*(8*A*b^2 + 3*a^2*(3*A + 5*C))*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(S
qrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c +
 d*x]))/(a - b)])/(15*a^4*d) + (2*Sqrt[a + b]*(2*a*A*b - 8*A*b^2 - 3*a^2*(3*A + 5*C))*Cot[c + d*x]*EllipticF[A
rcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x
]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(15*a^3*d) + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(5
*a*d*Cos[c + d*x]^(5/2)) - (8*A*b*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(15*a^2*d*Cos[c + d*x]^(3/2))

Rule 2816

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*
Tan[e + f*x]*Rt[(a + b)/d, 2]*Sqrt[(a*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(a*(1 + Csc[e + f*x]))/(a - b)]*Ellipt
icF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[d*Sin[e + f*x]]*Rt[(a + b)/d, 2])], -((a + b)/(a - b))])/(a*f), x] /
; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 2994

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[(-2*A*(c - d)*Tan[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c
- d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[
(c + d)/b, 2])], -((c + d)/(c - d))])/(f*b*c^2), x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] &&
 EqQ[A, B] && PosQ[(c + d)/b]

Rule 2998

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx &=\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 \int \frac {-2 A b+\frac {1}{2} a (3 A+5 C) \cos (c+d x)+A b \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{5 a}\\ &=\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {8 A b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 \int \frac {\frac {1}{4} \left (8 A b^2+3 a^2 (3 A+5 C)\right )+\frac {1}{2} a A b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2}\\ &=\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {8 A b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {1}{15} \left (-A \left (9+\frac {8 b^2}{a^2}\right )-15 C\right ) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+\frac {\left (2 a A b-8 A b^2-3 a^2 (3 A+5 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{15 a^2}\\ &=\frac {2 (a-b) \sqrt {a+b} \left (A \left (9+\frac {8 b^2}{a^2}\right )+15 C\right ) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^2 d}+\frac {2 \sqrt {a+b} \left (2 a A b-8 A b^2-3 a^2 (3 A+5 C)\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{15 a^3 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{5 a d \cos ^{\frac {5}{2}}(c+d x)}-\frac {8 A b \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{15 a^2 d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.44, size = 1298, normalized size = 3.67 \[ \text {result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(7/2)*Sqrt[a + b*Cos[c + d*x]]),x]

[Out]

-1/15*((-4*a*(7*a^2*A*b + 8*A*b^3 + 15*a^2*b*C)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Co
s[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[Ar
cSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)
*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(9*a^3*A + 8*a*A*b^2 + 15*a^3*C)*((Sqrt[((a + b)*Cot[(c +
d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c +
d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)
/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[((a + b)*Cot[(c +
 d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c +
 d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2
]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(9*a^2*A*b + 8*A
*b^3 + 15*a^2*b*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos
[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x]
)*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*
Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[(
(a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c
 + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*
x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), A
rcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt
[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]]))
)/(a^3*d) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*((2*Sec[c + d*x]*(9*a^2*A*Sin[c + d*x] + 8*A*b^2*Sin[
c + d*x] + 15*a^2*C*Sin[c + d*x]))/(15*a^3) - (8*A*b*Sec[c + d*x]*Tan[c + d*x])/(15*a^2) + (2*A*Sec[c + d*x]^2
*Tan[c + d*x])/(5*a)))/d

________________________________________________________________________________________

fricas [F]  time = 0.50, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{b \cos \left (d x + c\right )^{5} + a \cos \left (d x + c\right )^{4}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(b*cos(d*x + c)^5 + a*cos(d*x + c)
^4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.45, size = 2236, normalized size = 6.32 \[ \text {Expression too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x)

[Out]

2/15/d*(3*A*a^3-9*A*cos(d*x+c)^3*a^3+8*A*cos(d*x+c)^3*b^3+6*A*cos(d*x+c)^2*a^3-15*C*cos(d*x+c)^3*a^3-8*A*cos(d
*x+c)^4*b^3-8*A*cos(d*x+c)^3*a*b^2+4*A*cos(d*x+c)^2*a*b^2-A*cos(d*x+c)*a^2*b+9*A*sin(d*x+c)*cos(d*x+c)^2*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c
),(-(a-b)/(a+b))^(1/2))*a^2*b+8*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2-2*A*sin(d*x+c)*co
s(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d
*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-8*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((
a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b^2+9
*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ell
ipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b)
)^(1/2))*a*b^2-2*A*sin(d*x+c)*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*b-8*A*sin(d*x+c)*cos(d*x+c)^3*(cos
(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+
c),(-(a-b)/(a+b))^(1/2))*a*b^2-15*C*cos(d*x+c)^4*a^2*b+15*C*cos(d*x+c)^3*a^2*b+15*C*cos(d*x+c)^2*(cos(d*x+c)/(
1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b
)/(a+b))^(1/2))*sin(d*x+c)*a^2*b+15*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b-9*A*cos(d*x+c
)^4*a^2*b+4*A*cos(d*x+c)^4*a*b^2+10*A*cos(d*x+c)^3*a^2*b+15*C*cos(d*x+c)^2*a^3+9*A*(cos(d*x+c)/(1+cos(d*x+c)))
^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/sin(d*x
+c),(-(a-b)/(a+b))^(1/2))*a^3+8*A*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1
/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3-9*A*(cos(d*x+c)/(1+
cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*sin(d*x+c)*cos(d*x+c)^3*EllipticF((-1+cos(d*x
+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3+9*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*
cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^3+8*A*sin
(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE
((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^3-9*A*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))
*a^3+15*C*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*c
os(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)^3*sin(d*x+c)*a^3-15*C*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/
2))*sin(d*x+c)*a^3+15*C*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-15*C*cos(d*x+c)^2*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a
-b)/(a+b))^(1/2))*sin(d*x+c)*a^3)/(a+b*cos(d*x+c))^(1/2)/a^3/sin(d*x+c)/cos(d*x+c)^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {C \cos \left (d x + c\right )^{2} + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(7/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(7/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(1/2)),x)

[Out]

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(7/2)*(a + b*cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(7/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________